22 research outputs found

    A Self-adaptive Agent-based System for Cloud Platforms

    Full text link
    Cloud computing is a model for enabling on-demand network access to a shared pool of computing resources, that can be dynamically allocated and released with minimal effort. However, this task can be complex in highly dynamic environments with various resources to allocate for an increasing number of different users requirements. In this work, we propose a Cloud architecture based on a multi-agent system exhibiting a self-adaptive behavior to address the dynamic resource allocation. This self-adaptive system follows a MAPE-K approach to reason and act, according to QoS, Cloud service information, and propagated run-time information, to detect QoS degradation and make better resource allocation decisions. We validate our proposed Cloud architecture by simulation. Results show that it can properly allocate resources to reduce energy consumption, while satisfying the users demanded QoS

    Regulation of polarized morphogenesis by protein kinase C iota in oncogenic epithelial spheroids.

    Get PDF
    Protein kinase C iota (PKCι), a serine/threonine kinase required for cell polarity, proliferation and migration, is commonly up- or downregulated in cancer. PKCι is a human oncogene but whether this is related to its role in cell polarity and what repertoire of oncogenes acts in concert with PKCι is not known. We developed a panel of candidate oncogene expressing Madin-Darby canine kidney (MDCK) cells and demonstrated that H-Ras, ErbB2 and phosphatidylinositol 3-kinase transformation led to non-polar spheroid morphogenesis (dysplasia), whereas MDCK spheroids expressing c-Raf or v-Src were largely polarized. We show that small interfering RNA (siRNA)-targeting PKCι decreased the size of all spheroids tested and partially reversed the aberrant polarity phenotype in H-Ras and ErbB2 spheroids only. This indicates distinct requirements for PKCι and moreover that different thresholds of PKCι activity are required for these phenotypes. By manipulating PKCι function using mutant constructs, siRNA depletion or chemical inhibition, we have demonstrated that PKCι is required for polarization of parental MDCK epithelial cysts in a 3D matrix and that there is a threshold of PKCι activity above and below which, disorganized epithelial morphogenesis results. Furthermore, treatment with a novel PKCι inhibitor, CRT0066854, was able to restore polarized morphogenesis in the dysplastic H-Ras spheroids. These results show that tightly regulated PKCι is required for normal-polarized morphogenesis in mammalian cells and that H-Ras and ErbB2 cooperate with PKCι for loss of polarization and dysplasia. The identification of a PKCι inhibitor that can restore polarized morphogenesis has implications for the treatment of Ras and ErbB2 driven malignancies.Cancer Research UK; Royal Marsden/Institute of Cancer Research National Institute for Health Research Biomedical Research Centre (M.L.)

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Key Learning Outcomes for Clinical Pharmacology and Therapeutics Education in Europe: A Modified Delphi Study.

    Get PDF
    Harmonizing clinical pharmacology and therapeutics (CPT) education in Europe is necessary to ensure that the prescribing competency of future doctors is of a uniform high standard. As there are currently no uniform requirements, our aim was to achieve consensus on key learning outcomes for undergraduate CPT education in Europe. We used a modified Delphi method consisting of three questionnaire rounds and a panel meeting. A total of 129 experts from 27 European countries were asked to rate 307 learning outcomes. In all, 92 experts (71%) completed all three questionnaire rounds, and 33 experts (26%) attended the meeting. 232 learning outcomes from the original list, 15 newly suggested and 5 rephrased outcomes were included. These 252 learning outcomes should be included in undergraduate CPT curricula to ensure that European graduates are able to prescribe safely and effectively. We provide a blueprint of a European core curriculum describing when and how the learning outcomes might be acquired

    Long-term ethanol consumption impairs reverse cholesterol transport function of high-density lipoproteins by depleting high-density lipoprotein sphingomyelin both in rats and in humans

    No full text
    Moderate alcohol consumption has been linked to lower incidence of coronary artery disease due to increased plasma high-density lipoprotein (HDL), whereas heavy drinking has the opposite effect. Because of the crucial role of HDL in reverse cholesterol transport and positive correlation of HDL sphingomyelin (SM) content with cholesterol efflux, we have compared HDL SM content with its reverse cholesterol transport capacity both in rats fed ethanol on long-term basis and alcoholic individuals. In rats, SM HDL content was decreased in the ethanol group (−15.4%, P < .01) with a concomitant efflux decrease (−21.0%, P < .01) compared to that in controls. Similarly, HDL from the ethanol group, when compared with HDL from the control group, exhibited 13.8% (P < .05) less cholesterol uptake with control-group hepatocytes and 35.0% (P < .05) less cholesterol uptake with ethanol-group hepatocytes. Conversely, hepatocytes from the ethanol group, when compared with hepatocytes from the control group, exhibited 31.0% (P < .01) less cholesterol uptake with control-group HDL and 48.0% (P < .01) less with ethanol-group HDL. In humans, SM content in plasma HDL was also decreased in chronically alcoholic individuals without liver disease (−51.5%, P < .01) and in chronically alcoholic individuals with liver disease (−51.3%, P < .01), compared with nondrinkers. Concomitantly, in alcoholic individuals without liver disease, both efflux and uptake were decreased by 83.0% and 54.0% (P < .01), respectively, and in chronically alcoholic individuals with liver disease by 84.0% and 61.0% (P < .01), respectively, compared with nondrinkers. Based on these findings, we conclude that long-term ethanol consumption significantly impairs not only cholesterol efflux function of HDL by decreasing its SM content but also cholesterol uptake by affecting presumably hepatocyte receptors for HDL

    A Cancer-Associated Mutation in Atypical Protein Kinase C iota Occurs in a Substrate-Specific Recruitment Motif

    No full text
    Atypical protein kinase C tau (PKC tau) has roles in cell growth, cellular polarity, and migration, and its abundance is frequently increased in cancer. We identified a protein interaction surface containing a dibasic motif (RIPR) that bound a distinct subset of PKC tau substrates including lethal giant larvae 2 (LLGL2) and myosin X, but not other substrates such as Par3. Further characterization demonstrated that Arg(471) in this motif was important for binding to LLGL2, whereas Arg(474) was critical for interaction with myosin X, indicating that multiple complexes could be formed through this motif. A somatic mutation of the dibasic motif (R471C) was the most frequent mutation of PKC iota in human cancer, and the intact dibasic motif was required for normal polarized epithelial morphogenesis in three-dimensional cysts. Thus, the R471C substitution is a change-of-function mutation acting at this substrate-specific recruitment site to selectively disrupt the polarizing activity of PKC iota

    Control of MT1-MMP transport by atypical PKC during breast-cancer progression

    Get PDF
    International audienceDissemination of carcinoma cells requires the pericellular degradation of the extracellular matrix, which is mediated by membrane type 1-matrix metalloproteinase (MT1-MMP). In this article, we report a co-up-regulation and colocalization of MT1-MMP and atypical protein kinase C iota (aPKCι) in hormone receptor-negative breast tumors in association with a higher risk of metastasis. Silencing of aPKC in invasive breast-tumor cell lines impaired the delivery of MT1-MMP from late endocytic storage compartments to the surface and inhibited matrix degradation and invasion. We provide evidence that aPKCι, in association with MT1-MMP-containing endosomes, phosphorylates cortactin, which is present in F-actin-rich puncta on MT1-MMP-positive endosomes and regulates cortactin association with the membrane scission protein dynamin-2. Thus, cell line-based observations and clinical data reveal the concerted activity of aPKC, cortactin, and dynamin-2, which control the trafficking of MT1-MMP from late endosome to the plasma membrane and play an important role in the invasive potential of breast-cancer cells
    corecore